A comparative experimental study on large size center and bi-directional offset spring-bed thrust bearing

Author:

Yang Shifu1ORCID,Zheng Wenbin1,Jiang Mulong2,Pei Shiyuan1,Xu Hua1

Affiliation:

1. Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi’an Jiaotong University, Xi’an, China

2. Dongfang Electric Corporation (DEC), Dongfang Electric Machinery Co., Ltd, Deyang, China

Abstract

The central support tilting thrust bearing is widely used in the motor-generator unit, and the central support tilting thrust bearing performs poorly compared with the offset bearing. In order to improve the performance of the thrust bearing capable of the bidirectional operation, a spring-supported switching tilting thrust bearing was designed, which could run under offset condition at both clockwise and counterclockwise. In order to verify the reliability of the bearing, we designed a true size thrust bearing test bench and measured the performance parameters of the temperature, pressure, oil film thickness, and power loss of the pad. This article introduces in detail the operation mechanism of the bidirectional offset spring-bed tilting thrust bearing. The bidirectional offset spring-bed tilting thrust bearing structure and the central support bearing structure were compared and tested. The test results of the performance difference of large tilting pad bearings with different structures were obtained. According to the experiment, the spring support structure has good adaptability, and the improved bidirectional offset support bearing not only has higher bearing capacity, but also has better performance in all aspects of temperature rise and loss than the central support bearing. The actual size experiment provides the experimental data for the theoretical calculation of large tilting pad bearings, providing a more accurate basis for the bearing performance and safety assessment.

Funder

the National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3