Affiliation:
1. Jiangsu Provincial Key Laboratory of Bionic Functional Materials, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
2. Hunan City University, Yiyang, China
Abstract
Electrostatic cumulative discharges from the surfaces of polyurethane elastomers are often the primary cause of accidents and disasters, such as equipment failures, fires, and explosions, in industries. In this study, in order to improve the electrostatic protection performance of PU as well as to enhance the wear resistance of the PU matrix, copper foam was embedded in polyurethane to form a copper foam-based polyurethane composite with a three-dimensional connected metal skeleton. The mechanical properties, wear resistance, and antistatic capability of the composite were experimentally investigated. The results indicated that the connected metal skeleton structure forms a good conductive network and reduces the static electricity on the polyurethane composite surface to less than 1/10 of that on polyurethane. Moreover, owing to the mechanical support offered by metal skeletons with pore densities greater than 50 pores per inch, the wear resistance of the polyurethane composite is also enhanced, and consequently, its degree of wear is reduced to ∼1/5 of that of polyurethane under the same conditions.
Subject
Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献