Effect of surface treatment of carbon fibers on the mechanical and frictional properties of polyetheretherketone/polytetrafluoroethylene composites: Experimentation and finite element analysis

Author:

Xiao Wei1ORCID,Ji Xin1

Affiliation:

1. School of Mathematical, Physics and Statistics, Shanghai University of Engineering Science, Shanghai, China

Abstract

Polytetrafluoroethylene has many excellent properties and a wide range of applications, but its poor wear resistance, hardness, and creep resistance have severely limited the use of the polytetrafluoroethylene composites. In this work, the surface of carbon fibers was treated with silane coupling agent acetone solution, and then sintering technology was used to prepare carbon fibers/polyetheretherketone (PEEK)/ polytetrafluoroethylene composites. The mechanical and frictional wear properties of the composites were analyzed using an electronic tensile tester, a Shore hardness tester, and a frictional wear tester, and scanning electron microscopy was applied to analyze the surface morphology of the composites after wear. The experimental results shown that the addition of carbon fibers could significantly improve the mechanical properties of the composites, reduce the radial shrinkage, and increase the Shore hardness of the composites. Under the same experimental conditions, the carbon fibers (20 wt.%) /polyetheretherketone/polytetrafluoroethylene composites has the best wear resistance, with a friction coefficient of 0.196 and the wear rate of 2.41 ×  10−6 mm3/N·m. In the theoretical simulation, the thermal conductivity of polytetrafluoroethylene composites was predicted using ANSYS software, with the changes in the temperature and friction force in the friction process. The theoretical simulation results matched with the experimental values, which proved the accuracy of the theoretical simulations.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Retraction notice;Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology;2022-10-10

2. Thermomechanical and tribological properties of polyimide and polyethersulfone blends reinforced with expanded graphite particles at various elevated temperatures;Journal of Applied Polymer Science;2022-04-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3