Enhancement of steady state performance of hydrodynamic journal bearing using chevron-shaped surface texture

Author:

Sharma Sanjay1,Jamwal Gourav1,Awasthi Rajeev K2

Affiliation:

1. School of Mechanical Engineering, Shri Mata Vaishno Devi University, Katra, India

2. Department of Mechanical Engineering, Beant College of Engineering and Technology, Gurdaspur, Punjab, India

Abstract

In the present study, the optimum design parameters of chevron-shaped surface texture have been determined for the steady state performance enhancement of a hydrodynamic journal bearing. The fluid flow governing Reynolds equation has been solved using the finite element method, assuming iso-viscous and Newtonian fluid to obtain the static performance characteristics of textured hydrodynamic journal bearing. Different texture depths, areas and distributions have been numerically simulated and a set of optimum texture parameters has been determined based on the maximum performance enhancement ratio. The numerically obtained results indicate that surface texturing can improve bearing performance if the textured region is placed in the pressure build-up region. Moreover, surface texturing is the most effective at bearing performance enhancement when the bearing operates at lower eccentricity ratios. The performance enhancement ratio, which is the ratio of load-carrying capacity to coefficient of friction is found to be maximum at texture depth of 0.4, k = 0.3, textured zone located in the increasing pressure region and eccentricity ratio of 0.2.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3