Aminoglycoside-induced mutation suppression (stop codon readthrough) as a therapeutic strategy for Duchenne muscular dystrophy

Author:

Malik Vinod1,Rodino-Klapac Louise R.2,Viollet Laurence1,Mendell Jerry R.3

Affiliation:

1. The Research Institute at Nationwide Children's Hospital and Department of Pediatrics at The Ohio State University College of Medicine, Columbus, OH, USA

2. The Research Institute at Nationwide Children 's Hospital and Department of Pediatrics at The Ohio State University College of Medicine, Columbus, OH, USA

3. The Research Institute at Nationwide Children's Hospital and Department of Pediatrics at The Ohio State University College of Medicine, Columbus, OH, USA,

Abstract

Duchenne muscular dystrophy (DMD) is the most common, lethal, X-linked genetic disease, affecting 1 in 3500 newborn males. It is caused by mutations in the DMD gene. Owing to the large size of the gene, the mutation rate in both germline and somatic cells is very high. Nearly 13-15% of DMD cases are caused by nonsense mutations leading to premature termination codons in the reading frame that results in truncated dystrophin protein. Currently there is no cure for DMD. The only available treatment is the use of glucocorticoids that have modest beneficial effects accompanied by significant side effects. Different therapeutic strategies have been developed ranging from gene therapy to exon skipping and nonsense mutation suppression to produce the full-length protein. These strategies have shown promise in the mdx mouse model of muscular dystrophy where they have been reported to ameliorate the dystrophic phenotype and correct the physiological defects in the membrane. Each of these molecular approaches are being investigated in clinical trials. Here we review nonsense mutation suppression by aminoglycosides as a therapeutic strategy to treat DMD with special emphasis on gentamicin-induced readthrough of disease-causing premature termination codons.

Publisher

SAGE Publications

Subject

Neurology (clinical),Neurology,Pharmacology

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3