Autism Associated With the Mitochondrial DNA G8363A Transfer RNALys Mutation

Author:

Graf William D.1,Marin-Garcia Jose2,Gao H.G.3,Pizzo Senia3,Naviaux Robert K.3,Markusic David3,Barshop Bruce A.4,Courchesne Eric3,Haas Richard H.5

Affiliation:

1. Departments of Pediatrics and Neurology, University of Washington Seattle, WA,

2. Molecular Cardiology Institute, Inc Highland Park, NJ

3. Department of Neurosciences University of California San Diego, La Jolla, CA

4. Department of Medicine University of California San Diego, La Jolla, CA, Department of Pediatrics, University of California San Diego, La Jolla, CA

5. Department of Neurosciences University of California San Diego, La Jolla, CA, Department of Medicine University of California San Diego, La Jolla, CA

Abstract

We report a family with a heterogeneous group of neurologic disorders associated with the mitochondrial DNA G8363A transfer ribonucleic acid (RNA)Lys mutation. The phenotype of one child in the family was consistent with autism. During his second year of life, he lost previously acquired language skills and developed marked hyperactivity with toe-walking, abnormal reciprocal social interaction, stereotyped mannerisms, restricted interests, self-injurious behavior, and seizures. Brain magnetic resonance imaging (MRI) and repeated serum lactate studies were normal. His older sister developed signs of Leigh syndrome with progressive ataxia, myoclonus, seizures, and cognitive regression. Her laboratory studies revealed increased MRI T2-weighted signal in the putamen and posterior medulla, elevated lactate in serum and cerebrospinal fluid, and absence of cytochrome c oxidase staining in muscle histochemistry. Molecular analysis in her revealed the G8363A mutation of the mitochondrial transfer RNA Lys gene in blood (82% mutant mitochondrial DNA) and muscle (86%). The proportions of mutant mitochondrial DNA from her brother with autism were lower (blood 60%, muscle 61%). It is likely that the origin of his autism phenotype is the pathogenic G8363A mitochondrial DNA mutation. This observation suggests that certain mitochondrial point mutations could be the basis for autism in some individuals. ( J Child Neurol 2000;15:357-361).

Publisher

SAGE Publications

Subject

Neurology (clinical),Pediatrics, Perinatology and Child Health

Cited by 134 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3