Electroencephalographic (EEG) Biomarkers in Genetic Neurodevelopmental Disorders

Author:

Goodspeed Kimberly123ORCID,Armstrong Dallas12,Dolce Alison12,Evans Patricia123,Said Rana12,Tsai Peter1234ORCID,Sirsi Deepa12

Affiliation:

1. Department of Pediatrics, Division of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA

2. Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA

3. Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA

4. Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA

Abstract

Collectively, neurodevelopmental disorders are highly prevalent, but more than a third of neurodevelopmental disorders have an identifiable genetic etiology, each of which is individually rare. The genes associated with neurodevelopmental disorders are often involved in early brain development, neuronal signaling, or synaptic plasticity. Novel treatments for many genetic neurodevelopmental disorders are being developed, but disease-relevant clinical outcome assessments and biomarkers are limited. Electroencephalography (EEG) is a promising noninvasive potential biomarker of brain function. It has been used extensively in epileptic disorders, but its application in neurodevelopmental disorders needs further investigation. In this review, we explore the use of EEG in 3 of the most prevalent genetic neurodevelopmental disorders—Angelman syndrome, Rett syndrome, and fragile X syndrome. Quantitative analyses of EEGs, such as power spectral analysis or measures of connectivity, can quantify EEG signatures seen on qualitative review and potentially correlate with phenotypes. In both Angelman syndrome and Rett syndrome, increased delta power on spectral analysis has correlated with clinical markers of disease severity including developmental disability and seizure burden, whereas spectral power analysis on EEG in fragile X syndrome tends to demonstrate abnormalities in gamma power. Further studies are needed to establish reliable relationships between quantitative EEG biomarkers and clinical phenotypes in rare genetic neurodevelopmental disorders.

Funder

Dedman Family Endowment

Publisher

SAGE Publications

Subject

Neurology (clinical),Pediatrics, Perinatology and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3