Quantitative Electroencephalography (EEG) Predicting Acute Neurologic Deterioration in the Pediatric Intensive Care Unit: A Case Series

Author:

Munjal Neil K.1ORCID,Bergman Ira2,Scheuer Mark L.3,Genovese Christopher R.4,Simon Dennis W.1,Patterson Christina M.2

Affiliation:

1. Department of Pediatric Critical Care Medicine, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA

2. Division of Child Neurology

3. Persyst Development Corporation, Solana Beach, CA, USA

4. Carnegie Mellon University, Pittsburgh, PA, USA

Abstract

Introduction: Continuous neurologic assessment in the pediatric intensive care unit is challenging. Current electroencephalography (EEG) guidelines support monitoring status epilepticus, vasospasm detection, and cardiac arrest prognostication, but the scope of brain dysfunction in critically ill patients is larger. We explore quantitative EEG in pediatric intensive care unit patients with neurologic emergencies to identify quantitative EEG changes preceding clinical detection. Methods: From 2017 to 2020, we identified pediatric intensive care unit patients at a single quaternary children's hospital with EEG recording near or during acute neurologic deterioration. Quantitative EEG analysis was performed using Persyst P14 (Persyst Development Corporation). Included features were fast Fourier transform, asymmetry, and rhythmicity spectrograms, “from-baseline” patient-specific versions of the above features, and quantitative suppression ratio. Timing of quantitative EEG changes was determined by expert review and prespecified quantitative EEG alert thresholds. Clinical detection of neurologic deterioration was defined pre hoc and determined through electronic medical record documentation of examination change or intervention. Results: Ten patients were identified, age 23 months to 27 years, and 50% were female. Of 10 patients, 6 died, 1 had new morbidity, and 3 had good recovery; the most common cause of death was cerebral edema and herniation. The fastest changes were on “from-baseline” fast Fourier transform spectrograms, whereas persistent changes on asymmetry spectrograms and suppression ratio were most associated with morbidity and mortality. Median time from first quantitative EEG change to clinical detection was 332 minutes (interquartile range: 201-456 minutes). Conclusion: Quantitative EEG is potentially useful in earlier detection of neurologic deterioration in critically ill pediatric intensive care unit patients. Further work is required to quantify the predictive value, measure improvement in outcome, and automate the process.

Funder

Eunice Kennedy Shriver National Institute of Child Health and Human Development

Publisher

SAGE Publications

Subject

Neurology (clinical),Pediatrics, Perinatology and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3