Clinical Pertinence Metric Enables Hypothesis-Independent Genome-Phenome Analysis for Neurologic Diagnosis

Author:

Segal Michael M.1,Abdellateef Mostafa2,El-Hattab Ayman W.3,Hilbush Brian S.4,De La Vega Francisco M.45,Tromp Gerard6,Williams Marc S.6,Betensky Rebecca A.7,Gleeson Joseph2

Affiliation:

1. SimulConsult Inc, Chestnut Hill, MA, USA

2. Center for Brain Development, University of California, San Diego, La Jolla, CA, USA

3. Division of Clinical Genetics and Metabolic Disorders, Pediatric Department, Tawam Hospital, Al-Ain, United Arab Emirates

4. Real Time Genomics Inc, San Bruno, CA, USA

5. Department of Genetics, Stanford University, CA, USA

6. Genomic Medicine Institute, Geisinger Health System, Danville, Pennsylvania, USA

7. Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, USA

Abstract

We describe an “integrated genome-phenome analysis” that combines both genomic sequence data and clinical information for genomic diagnosis. It is novel in that it uses robust diagnostic decision support and combines the clinical differential diagnosis and the genomic variants using a “pertinence” metric. This allows the analysis to be hypothesis-independent, not requiring assumptions about mode of inheritance, number of genes involved, or which clinical findings are most relevant. Using 20 genomic trios with neurologic disease, we find that pertinence scores averaging 99.9% identify the causative variant under conditions in which a genomic trio is analyzed and family-aware variant calling is done. The analysis takes seconds, and pertinence scores can be improved by clinicians adding more findings. The core conclusion is that automated genome-phenome analysis can be accurate, rapid, and efficient. We also conclude that an automated process offers a methodology for quality improvement of many components of genomic analysis.

Publisher

SAGE Publications

Subject

Clinical Neurology,Pediatrics, Perinatology, and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3