Development and Evaluation of Computable Phenotypes in Pediatric Epilepsy:3 Cases

Author:

Pan Sabrina1ORCID,Wu Alan1,Weiner Mark1,M Grinspan Zachary12

Affiliation:

1. Department of Population Health Sciences, Weill Cornell Medicine/New York-Presbyterian Hospital, New York, NY, USA

2. Department of Pediatrics, Weill Cornell Medicine/New York-Presbyterian Hospital, New York, NY, USA

Abstract

Introduction: Computable phenotypes allow identification of well-defined patient cohorts from electronic health record data. Little is known about the accuracy of diagnostic codes for important clinical concepts in pediatric epilepsy, such as (1) risk factors like neonatal hypoxic-ischemic encephalopathy; (2) clinical concepts like treatment resistance; (3) and syndromes like juvenile myoclonic epilepsy. We developed and evaluated the performance of computable phenotypes for these examples using electronic health record data at one center. Methods: We identified gold standard cohorts for neonatal hypoxic-ischemic encephalopathy, pediatric treatment-resistant epilepsy, and juvenile myoclonic epilepsy via existing registries and review of clinical notes. From the electronic health record, we extracted diagnostic and procedure codes for all children with a diagnosis of epilepsy and seizures. We used these codes to develop computable phenotypes and evaluated by sensitivity, positive predictive value, and the F-measure. Results: For neonatal hypoxic-ischemic encephalopathy, the best-performing computable phenotype (HIE ICD-9 /10 and [brain magnetic resonance imaging (MRI) or electroencephalography (EEG) within 120 days of life] and absence of commonly miscoded conditions) had high sensitivity (95.7%, 95% confidence interval [CI] 85-99), positive predictive value (100%, 95% CI 95-100), and F measure (0.98). For treatment-resistant epilepsy, the best-performing computable phenotype (3 or more antiseizure medicines in the last 2 years or treatment-resistant ICD-10) had a sensitivity of 86.9% (95% CI 79-93), positive predictive value of 69.6% (95% CI 60-79), and F-measure of 0.77. For juvenile myoclonic epilepsy, the best performing computable phenotype (JME ICD-10) had poor sensitivity (52%, 95% CI 43-60) but high positive predictive value (90.4%, 95% CI 81-96); the F measure was 0.66. Conclusion: The variable accuracy of our computable phenotypes (hypoxic-ischemic encephalopathy high, treatment resistance medium, and juvenile myoclonic epilepsy low) demonstrates the heterogeneity of success using administrative data to identify cohorts important for pediatric epilepsy research.

Funder

Pediatric Epilepsy Research Foundation

Publisher

SAGE Publications

Subject

Neurology (clinical),Pediatrics, Perinatology and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3