Clinical, Pathologic, and Neurochemical Studies of an Unusual Case of Neuronal Storage Disease With Lamellar Cytoplasmic Inclusions: A New Genetic Disorder?

Author:

Rose Arthur L.1,Farmer Peter M.2,Mitra Nirmala1,Wisniewski Krystyna E.3,Pullarkat Raju K.4

Affiliation:

1. Division of Pediatric Neurology, Department of Neurology, State University of New York-Health Science Center at Brooklyn, NY

2. Department of Pathology, State University of New York-Health Science Center at Brooklyn, NY

3. Division of Pediatric Neurology, Department of Neurology, State University of New York-Health Science Center at Brooklyn, NY, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY

4. New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY

Abstract

A child of first-cousin Puerto Rican parents had global developmental delay, failure to thrive, and hypotonia since early infancy. At 1½ years of age, she developed clinical and electrophysiologic evidence of progressive motor and sensory neuropathy At 2½ years, she developed visual impairment and optic atrophy followed by gradual involvement of the 7th, 9th, 10th, and 12th cranial nerves. Uncontrollable myoclonic seizures began at 4 years and she died at 6 years of age. Motor nerve conduction velocities were initially normal and later became markedly slowed. Sensory distal latency responses were absent. Lysosomal enzyme activities in leukocytes and fibroblasts were normal. Sural nerve and two muscle biopsies showed only nondiagnostic abnormalities. Electron microscopy of lymphocytes, skin, and fibroblasts showed cytoplasmic inclusions. Light microscopy of frontal cortex biopsy showed neuronal storage material staining positively with Luxol fast blue, and electron microscopy showed cytoplasmic membranous bodies in neurons, suggesting an accumulation of a ganglioside. At autopsy, all organs were small but otherwise normal and without abnormal storage cells in the liver, spleen, or bone marrow. Anterior spinal nerve roots showed loss of large myelinated axons. The brain was small and atrophic; cortical neurons showed widespread accumulation of storage material, most marked in the pyramidal cell layer of the hippocampus. Subcortical white matter was gliotic with loss of axons and myelin sheaths. In cortical gray matter there was a 35% elevation of total gangliosides, with a 16-fold increase in G M3, a three- to four-fold increase in GM2 gangliosides, and a 15-fold elevation of lactosyl ceramide. GM3 sialidase activity was normal in gray matter at 3.1 nmols/mg protein per hour and lactosyl ceraminidase I and II activities were 70% to 80% of normal. In white matter, total myelin was reduced by 50% but its composition was normal. Phospholipid distribution and sphingomyelin content were normal in gray matter, white matter, and in the liver. These biochemical findings were interpreted as nonspecific abnormalities. The nature of the neuronal storage substance remains to be determined. (J Child Neurol 1999;14:123-129).

Publisher

SAGE Publications

Subject

Clinical Neurology,Pediatrics, Perinatology, and Child Health

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3