Pathologic Features of Dysplasia and Accompanying Alterations Observed in Surgical Specimens from Patients with Intractable Epilepsy

Author:

Kakita Akiyoshi1,Kameyama Shigeki2,Hayashi Shintaro3,Masuda Hiroshi3,Takahashi Hitoshi2

Affiliation:

1. Department of Pathological Neuroscience Resource Branch for Brain Disease Research CBBR, University of Niigata, Niigata, Japan, -u.ac.jp.

2. Department of Pathology Brain Research Institute, University of Niigata, Niigata, Japan

3. Department of Neurosurgery and Epilepsy Center Nishi-Niigata Chuo National Hospital, Niigata, Japan

Abstract

Malformations caused by abnormalities of cortical development, or cortical dysplasias, were examined in surgical specimens from 108 patients with medically intractable epilepsy to determine the scope of histopathologic changes. The relevance of the clinical findings was also evaluated. Various types and degrees of dysplastic features were observed in various combinations, including architectural abnormalities, an increased number of neurons in the molecular layer and/or cortical layer II, neuronal clustering, an increased number of satellite oligodendrocytes, abnormal gyration, single and/or aggregates of heterotopic neurons in the white matter, and the appearance of cytologically abnormal cells, such as giant or dysmorphic neurons and balloon cells. In the temporal lobe specimens, microdysgenesis (corresponding to mild malformations caused by abnormalities of cortical development and type IA/B focal cortical dysplasias) was more frequently observed than Taylor-type focal cortical dysplasia (type IIA/B), whereas in the frontal lobe specimens, the frequency of occurrence of both types was even. The ages at seizure onset and surgery of patients with the latter type were significantly lower than those of patients with the former. On the other hand, prominent astrocytosis in the cortex and white matter was evident in all cases, and many corpora amylacea and neurofibrillary tangle—like inclusions were observed in a subset of cases. An ultrastructural investigation revealed dilatation of the postsynaptic dendritic spines and shafts in the cortex and features indicating the occurrence in the white matter of demyelination followed by remyelination. Thus, with regard to the epileptogenic lesions, although dysplastic changes constitute the pathogenetic basis, the overlapping subsequent degenerative processes involving synapses, dendrites, and axons might contribute to the development of epileptogenic processes. Astrocytes might also actively participate in the development of the pathogenesis of epilepsy. ( J Child Neurol 2005;20:341—350).

Publisher

SAGE Publications

Subject

Clinical Neurology,Pediatrics, Perinatology, and Child Health

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3