New Insights Into the Pathogenesis of Congenital Myopathies

Author:

Sarnat Harvey B.1

Affiliation:

1. Department of Pediatrics, Medicine (Neurology), and Pathology (Neuropathology), University of Washington School of Medicine, Seattle, WA

Abstract

Congenital myopathies are developmental disorders of muscle that are best understood in the context of ontogenesis. Segmental amyoplasia results from a defective somite, usually because of lack of induction by the notochord and neural tube; the connective tissue matrix of the muscle is derived from lateral mesoderm and is present, but the myocytes are derived from somitic mesoderm and are replaced by adipose cells. Generalized amyoplasia is due to defective myogenic regulatory genes. X-linked recessive myotubular myopathy is associated with overexpression of vimentin and desmin, fetal intermediate filaments that attach to nuclear, mitochondrial, and inner sarcolemmal membranes and Z-bands of sarcomeres to preserve the morphologic organization of the myotube. Neonatal myotonic dystrophy is a true maturational delay in muscle development. Congenital muscle fiber-type disproportion is a syndrome of multiple etiologies but in some cases is associated with cerebellar hypoplasia and may be the result of abnormal suprasegmental stimulation of the developing motor unit at 20 to 28 weeks' gestation, mediated through bulbospinal pathways but not the corticospinal tract. Maturational delay of muscle in late developmental stages is less specific than in stages before midgestation. The Proteus syndrome is a muscular dysgenesis; abnormal paracrine growth factors and perhaps altered genes that regulate muscle differentiation and growth, such as myoD and myogenin, are the suspected cause. Focal proliferative myositis may be another example of a "paracrine myopathy." (J Child Neurol 1994;9:193-201).

Publisher

SAGE Publications

Subject

Clinical Neurology,Pediatrics, Perinatology, and Child Health

Reference92 articles.

1. Sarnat HB: Muscle Pathology and Histochemistry. Chicago, American Society of Clinical Pathologists Press, 1983, pp 45-66.

2. Fardeau M.: Relevance of morphologic studies in the classification and pathophysiology of congenital myopathies, in Serra-trice G , Gros D, Denuelle C, et al (eds): Neuromuscular Disorders. New York, Raven Press, 1984, pp 201-206.

3. Cytological differentiation of human fetal skeletal muscle

4. I. Ultrastructural Characteristics of Developing Human Muscle

5. Ultrastructure of Developing Human Muscle

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3