Oxidative Stress in the Brain of Fukuyama Type Congenital Muscular Dystrophy

Author:

Yamamoto Tomoko1,Shibata Noriyuki2,Kobayashi Makio2,Saito Kayoko3,Osawa Makiko3

Affiliation:

1. Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan, Department of Surgical Pathology, Tokyo Women's Medical University, Tokyo, Japan,

2. Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan

3. Department of Pediatrics, Tokyo Women's Medical University, Tokyo, Japan

Abstract

Astrocytes in the cerebrum and medulla oblongata of cases of Fukuyama type congenital muscular dystrophy were examined by immunohistochemistry of oxidative modification products and free-radical scavenging enzymes because abnormal glia limitans formed by astrocytic end feet is considered to be involved in the genesis of brain lesions of Fukuyama type congenital muscular dystrophy. The study was performed on two fetal cases of Fukuyama type congenital muscular dystrophy of 18 and 20 weeks' gestation and seven patients with Fukuyama type congenital muscular dystrophy ranging in age from 2 to 27 years. Eight age-matched control cases were used. Polymerase chain reaction (PCR) was performed to ascertain the gene phenotype of two child cases, in which prenatal gene analysis was not performed. Astrocytes, especially layer I astrocytes, of postnatal cases of Fukuyama type congenital muscular dystrophy were weakly positive for N ε-(carboxymethyl)lysine and argpyrimidine, suggesting that they were sensitive to oxidative stress, and the accumulation may be related to the abnormal glia limitans. Secondary increase of manganese (Mn) superoxide dismutase against the increase of free radicals was considered in patients with Fukuyama type congenital muscular dystrophy more than 14 years old considered to be homozygous for founder haplotype: homozygosity was suggested by PCR in two cases. In contrast, expression of Mn superoxide dismutase was decreased in 2- and 6-year-old children with Fukuyama type congenital muscular dystrophy that were heterozygous. Moreover, accumulation of argpyrimidine was exclusively found in astrocytes of the 2-year-old child that exhibited severe brain lesions. Function of astrocytes might be impaired or immature in severe or heterozygous cases. These results may confirm that astrocytes play an important role in the etiology of the brain lesion. ( J Child Neurol 2002;17:793—799).

Publisher

SAGE Publications

Subject

Neurology (clinical),Pediatrics, Perinatology and Child Health

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3