Sandwich Structures With Bio-Inspired Viscoelastic Optimized Suture Face Sheets for Blast Mitigation

Author:

Raut Manish Suresh1ORCID,Patel Mital Limjibhai1,Verma Harshit1,Gopalakrishnan S1,Jagadeesh Gopalan1

Affiliation:

1. Department of Aerospace Engineering, Indian Institute of Science, Bangalore, India

Abstract

In this paper, the performance of a novel bio-inspired face sheet in mitigating the effects of blast loading is investigated. The new design of the face sheet consists of an optimized bio-inspired suture structure sandwiched between two aluminium plates. The suture profile is obtained by performing structural optimization using Genetic Algorithm, wherein the dynamic responses obtained using a novel viscoelastic finite element formulation are used. The performance of this optimized suture-based face sheet is experimentally tested in a vertical shock tube which validates the results obtained using commercial finite element software Abaqus. The hybrid sandwich structure composed of an aluminium honeycomb core sandwiched between the developed face sheets is evaluated numerically for its blast resistance performance. The study shows that the proposed face sheet design, not only reduces the stresses in the face sheets significantly, but also reduces the core stresses compared to conventional aluminium face sheet–based sandwich structures. Several parametric studies are presented for axial and transverse shock loading on this hybrid sandwich structures that give more insight into their wave propagation characteristics.

Funder

Office of Naval Research Global

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development of bio-inspired blast mitigation steel systems;Journal of Constructional Steel Research;2024-08

2. Nonlinear dynamic response and damping performance of the viscoelastic composite core-based sandwich plates subjected to blast load;International Journal on Interactive Design and Manufacturing (IJIDeM);2024-06-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3