Affiliation:
1. School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, Australia
2. Department of Mechanical Engineering, Mahanakorn University of Technology, Nongchok, Bangkok, Thailand
Abstract
An improved third-order shear deformation theory is employed to investigate free and forced vibration responses of functionally graded plates. A power law distribution is used to describe the variation of material compositions across the plate thickness. The governing equations for vibration analysis obtained using an energy approach are then solved using the Ritz method. Two types of solutions, temperature independent and dependent material properties, are considered. Many effects of the volume fraction index, temperature, material pairs, thickness, plate aspect ratio, etc., which have significant impact on dynamic behaviour of the plates, are considered in the numerical illustrations of free and forced vibration results. At high temperatures, it is observed that the maximum deflections of the functionally graded plates subjected to the dynamic loading increase with the increase of frequency ratio and temperature.
Subject
Mechanical Engineering,Mechanics of Materials,Ceramics and Composites
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献