Dynamic response of foam sandwich structures under multiple ice projectiles impacts at high velocity

Author:

Liu Xin1ORCID,Mao Jize1,Qu Jia1ORCID,Yao Houqi1ORCID

Affiliation:

1. College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin, China

Abstract

Hail presents a significant threat to the structural integrity of aircraft, particularly with the extensive use of foam sandwich structures in aerospace applications. Therefore, it is crucial to consider the effects of hail impact on foam sandwich structures. This paper aims to investigate the impact of ice projectiles on carbon Fiber/PMI foam sandwich structures, using both experimental and numerical simulation approaches. The gas cannon was employed to launch ice projectiles, which were then directed towards the carbon Fiber/PMI foam sandwich structures. Additionally, a numerical simulation model was developed using ANSYS/LS-DYNA software to analyse the impact of these ice projectiles. Moreover, the validity of the finite element model was confirmed through experimental verification. The study involves simulations of single-point continuous impacts of ice projectiles and multi-point simultaneous impacts on carbon Fiber/PMI foam sandwich structures, while maintaining the same total impact energy. By varying the distribution of ice projectiles, the dynamic response and damage characteristics of the target plate are analysed. Specifically, the research aims to investigative the deformation characteristics of the target plate and the energy absorption of the structure. The research results underscore the importance of considering the distribution of ice projectiles in mitigating structural damage caused by hail impact.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3