Disbond detection of honeycomb sandwich structure through laser ultrasonics using signal energy map and local cross-correlation

Author:

Dong Zeyu1ORCID,Chen Weikun1,Saito Osamu2,Okabe Yoji2

Affiliation:

1. Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Japan

2. Institute of Industrial Science, University of Tokyo, Meguro-ku, Japan

Abstract

Detecting disbonds in honeycomb sandwich structures using ultrasonics is challenging due to the complex wave propagation. This paper investigates the method for disbond quantification in honeycomb sandwich structures using laser ultrasonics. In the experiments on an aluminum specimen, the detection frequency range was determined by the local defect resonance (LDR) in the disbond regions. The energy maps of bandpass wavefields identified the locations of disbonds. To improve the results, a frequency-wavenumber analysis of the wavefields was performed. The wavenumber spectra were reconstructed by wavenumber filtering to strengthen the outline components for quantifying disbonds. Local cross-correlation (LCC) was proposed to show the outlines of disbonds and honeycomb cells, whose results agreed well with the X-ray imaging. Moreover, LCC could also quantify a disbond in the composite honeycomb sandwich structure. Consequently, combining energy maps and LCC results can effectively detect the locations and sizes of disbonds in honeycomb sandwich structures.

Funder

JSNDI Research Grant 2021

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3