Advanced ultrasonic non-destructive testing for damage detection on thick and curved composite elements for constructions

Author:

Revel Gian Marco1,Pandarese Giuseppe1,Cavuto Alfonso1

Affiliation:

1. Dipartimento di Ingegneria Industriale e Scienze Matematiche, Università Politecnica delle Marche, Ancona, Italy

Abstract

In this work, the problem of non-destructive testing on composite components with complex shapes for civil constructions and transport infrastructures is analyzed. In such applications at the state of the art main challenges are related with the inspection of thick sandwiches with low density cores (below 80 kg/m3) and curved panels. After a review of suitable non-destructive testing techniques, an original set-up for low frequency (100 kHz) ultrasonic inspection is proposed, which combines different solutions in through-transmission mode. The set-up is based on a hybrid configuration coupling a contact emitting probe with a non-contact air-coupled receiver. The use of a contact probe in emission is necessary to have enough energy to analyze thick components with low density core. The contact between probe and surface is made small (spot of 1 mm) and smooth using a spherical cap to increase lateral resolution at low frequency and to allow scan on irregular surfaces sometimes present in curved parts. To improve understanding this cap has been tested here also with a single probe in pulse echo mode. The non-contact probe in reception allows a better inspection flexibility on curved and thick components, where pulse echo is not feasible at all. The system is mainly developed for inspection after production in an industrialized production process, where through-transmission testing is possible. The analysis of results on two different samples (one thick sandwich with low density 40 kg/m3, 50 mm thick PUR core and one curved laminate panel) shows that the proposed methods can efficiently inspect construction composites of complex shape with satisfactory signal-to-noise ratio (usually SNR > 15 dB) and lateral resolution (2–3 mm).

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3