Design and optimization of multi-scale porous sandwich composites with excellent sound absorption and cushioning properties

Author:

Wu Liwei123,Zhang Xuefei1,Ban Jingyan1,Jiang Qian12ORCID,Li Ting-Ting1,Lin Jia-Horng1ORCID,Tang Youhong3

Affiliation:

1. Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textiles, Tiangong University, Tianjin, China

2. Tianjin and Ministry of Education Key Laboratory for Advanced Textile Composite Materials, Tiangong University, Tianjin, China

3. Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, South Australia, Australia

Abstract

Exposure to prolonged or excessive noise has been shown to cause a range of health problems. In this study, flexible sandwich composites (FSCs) with excellent sound absorption and mechanical properties were designed and fabricated by a one-step foaming process. The compound fabric as composite panel and fabric sequence contacted with PU foam has been designed and optimized for excellent cushioning and sound absorption properties. In comparisons of three processing methods for fabricating compound fabrics as reinforced panels of FSCs, punching/hot pressing was found to be the most effective method. Through experiments, the L (low-melting polyethylene terephthalate nonwoven fabric, LPNF) -W (warp-knitted spacer fabric, WKSF) -F (flexible polyurethane foam, FPF) composites had the best performance, reaching the sound absorption coefficient of 0.997 (1000 Hz), 107.77 KPa in compression modulus, 6541 N in maximum impact contact force and 44.68% in impact energy absorption. Morphological study revealed that the transition region formed by FPF and WKSF played a vital role in the L-W-F structure. In that region, small cavities and complex porous paths were observed that effectively improved the sound absorption and cushioning properties by dissipating the stress wave and sound wave level-to-level.

Funder

Natural Science Foundation of Tianjin City

Research Project of Tianjin Municipal Education Committee

Program for Innovative Research Team at the University of Tianjin

National Natural Science Foundation of China

Open Project Program of Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3