Vibration analysis of the multi-walled carbon nanotube reinforced doubly curved laminated composite shallow shell panels: An experimental and numerical study

Author:

Subramani Mageshwaran1,Ramamoorthy Manoharan1ORCID

Affiliation:

1. School of Mechanical Engineering, Vellore Institute of Technology (VIT), Vellore, India

Abstract

In this study, free and forced vibration analysis of the multi-walled carbon nanotube reinforced doubly curved laminated composite shallow shell panels has been performed. The governing differential equation of motion of the doubly curved laminated composite shallow shell panel is formulated using higher order shear deformation theory with the Lagrangian approach. In a finite element formulation , the mathematical model is derived with a nine-node quadrilateral element considering seven degrees of freedom at each node. The efficiency of the present finite element model (FEM) is demonstrated and compared by validating the results with the available literature, and it is also compared with the experimental measurements of the cylindrical laminated composite shell panel with and without multi-walled carbon nanotube reinforcement. Material properties of the laminated composite structure with and without multi-walled carbon nanotube reinforcements are evaluated through the impulse excitation vibration test in accordance with the ASTM E1876-15. The influence of multi-walled carbon nanotube on the stiffness and structural integrity of the curved laminated composite shallow shell panels is also studied in terms of natural frequencies. Parametric analysis for the multi-walled carbon nanotube reinforced doubly curved laminated composite shallow panel is performed to study the influence of radius of curvature, shell geometry, thickness ratio, aspect ratio, stacking sequence, and the boundary conditions on structural performance. The forced vibration behavior of the curved composite shallow shell panel is studied with the different geometry configuration, and the influence of multi-walled carbon nanotube in the transverse vibration response is also studied. It has been concluded that the rigidity and structural performance of the doubly curved laminated composite shell panels are enhanced with the reinforcement of multi-walled carbon nanotube.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3