Exact solutions of free vibration of simply supported functionally graded piezoelectric sandwich cylinders using a modified Pagano method

Author:

Wu Chih-Ping1,Chen Hsuan1

Affiliation:

1. Department of Civil Engineering, National Cheng Kung University, Tainan, Taiwan, ROC

Abstract

The three-dimensional free vibration analysis of simply supported, functionally graded piezoelectric material sandwich circular hollow cylinders with different surface conditions is presented. The material properties of each functionally graded piezoelectric material layer are regarded as heterogeneous through the thickness coordinate, and obey an exponent-law dependent on this. Pagano’s method is modified to be feasible for this study of functionally graded piezoelectric material sandwich cylinders, in which a displacement-based formulation is replaced by a mixed one; a set of the complex-valued solutions of the system equations is transferred to the corresponding set of real-valued solutions using Euler’s formula; a successive approximation method is adopted to approximately transform each functionally graded piezoelectric material layer into homogeneous piezoelectric layers with an equal and small thickness for each layer in comparison with the mid-surface radius, and with the homogeneous material properties determined in an average thickness sense; and a transfer matrix method is developed so that the general solutions of system equations can be obtained layer-by-layer, which is significantly less time-consuming than usual. A parametric study of the influence of the mid-surface radius-to-thickness ratio, open- and closed-circuit surface conditions, the thickness ratio of each layer, and the material-property gradient index on the natural frequencies of functionally graded piezoelectric material sandwich cylinders is carried out.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3