Mechanical modeling of a stitched sandwich thermal protection structure with ceramic-fiber-reinforced SiO2 aerogel as core layer

Author:

Sun Yantao1ORCID,Lv Shuangqi2,Yang Xiaoguang3,Huang Jia4,Fu Zhizhong1,Zheng Xiaomei1,Dong Liwei1,Fan Tianyu1,Zhang Shengliang1,Tuo Wei1,Zhou Lei1,He Xiuran1,Shi Duoqi3

Affiliation:

1. Beijing Aeronautical Engineering Technical Research Center, Beijing, China

2. Aviation Engineering Institute, Civil Aviation Flight University of China, Sichuan, China

3. School of Energy and Power Engineering, Beihang University, Beijing, China

4. School of Aeronautics and Astronautics, Central South University, Changsha, China

Abstract

Ceramic-fiber-reinforced SiO2 aerogel (CFRSA) composite was used as core layer to prepare a stitched sandwich thermal protection structure (SSTPS). Mechanical properties of the SSTPS were experimentally investigated and compared with that of CFRSA, including flatwise tension, flatwise compression, edgewise compression and shear. Research results showed that the SSTPS can greatly improve the mechanical properties of CFRSA. To further understand the non-linear, tension-compression asymmetric and transversely isotropic properties of the SSTPS, inner configurations were investigated by X-ray computed tomography and scanning electron microscopy. Mechanical models were established to predict the overall properties of the SSTPS through performance of each component, including theoretical model and finite element analysis (FEA) model. Mixed series-parallel spring models were constructed to theoretically predict the effective elasticity modulus of the SSTPS. Representative volume element (RVE) was selected for FEA modeling of the SSTPS, which can not only predict the equivalent elastic modulus of SSTPS, but also predict the nonlinear flatwise compression behavior. In order to verify whether the mechanical properties of large area SSTPS under complex stress can be represented by the properties of uniform materials through RVE analysis, four-point bending test and FEA modeling were carried out on a large scale SSTPS specimen. Results showed that when analyzing the macro bending behavior of large area SSTPS, the method of equivalent SSTPS to uniform material were of relatively high accuracy and efficiency.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3