Homogenized modeling and micromechanics analysis of thin-walled lattice plate structures for brake discs

Author:

Karamoozian Aminreza1,Tan Chin An2,Wang Liangmo1

Affiliation:

1. Department of Automotive Engineering, School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, PR China

2. Department of Mechanical Engineering, Wayne State University, Detroit, USA

Abstract

Periodic cellular structures, especially lattice designs, have potential to improve the cooling performance of brake disk system. In this paper, the method of two scales asymptotic homogenization was used to indicate the effective elastic stiffnesses of lattice plates structures. The arbitrary topology of lattice core cells connected to the back and front plates which are made of generally orthotropic materials, due to use in brake disc design. This starts with the derivation of general shell model with consideration of the set of unit cell problems and then making use of the model to determine the analytical equations and calculate the effective elastic properties of lattice plate concerning the connected back and front plates. The analytical and numerical method allows determining the stiffness properties and the internal forces in the trusses and plates of the lattice. Three types of core-based lattice plates, which are pyramidal, X-type and I-type lattices, have been studied. The I-type lattice is characterized here for the first time with particular attention on the role that the cell trusses and plates plays on the stiffness and strength properties. The lattice designs are finite element characterized and compared with the numerical and experimentally validated pyramidal and X-type lattices under identical conditions. The I-type lattice provides 4% higher strength more than the other lattice types with 9% higher truss fraction coefficient. Results show that the stiffness and yield strength of the lattices depend upon the stress–strain response of the parent alloy of trusses and plates, the truss mass fraction coefficient, the face carriers thickness and the core elements parameters. The study described here is limited to a linear analysis of lattice properties. Geometric nonlinearities, however, have a considerable impact on the effective behavior of a lattice and will be the subject of future studies.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3