Investigation of progressive failure in the composite sandwich panels with elastomeric foam core under concentrated loading

Author:

Nazari AR1,Kabir MZ1,Hosseini-Toudeshky H2,Alizadeh Vaghasloo Y3,Najafian S3

Affiliation:

1. Department of Civil and Environmental Engineering, Amirkabir University of Technology, Tehran, Iran

2. Department of Aerospace Engineering, Amirkabir University of Technology, Tehran, Iran

3. Department of Mechanical Engineering, Amirkabir University of Technology, Tehran, Iran

Abstract

Failure and damage of crushable materials employed as core for the sandwich structures reduces serviceability and energy absorption capacity of the components especially under bending load so that many beneficial properties seem to be achieved by application of noncrushable lightweight materials instead of crushable foams as core for the sandwich structures. In this paper, an elastomeric foam is employed as core for two aspect ratios of the composite sandwich panels and the enhancement of the load-carrying capacity in the elastomeric foam-cored sandwich panels is investigated in comparison to which is measured about the individual composite panels applied as skins. Both experimental and finite element simulation programs are included in the research. The load-carrying performance of the elastomeric foam-cored sandwich panels is considered dependent on two main features of the constituent materials as hyperelastic behavior of the foam core and progressive damage of the composite skins which are simulated in the finite element models in order to describe the failure mechanism in the panels. Collapse of the elastomeric foam-cored sandwich panels is considered due to connection of some failure lines in the composite skins; however, the foam core remains undamaged. The elastomeric foam core can transfer the load from the top composite skin to the bottom one so that a great energy absorption capacity is provided for these panels. The elastomeric foam after failure of the composite skins can mobilize the residual strength of the laminates to endure against large deformations prior to final collapse. By application of the composite laminates in sandwich form with elastomeric foam core, the maximum load carrying and energy absorption capacity of the composite laminates increased about 60 and 110%, respectively. The results show more favorite failure behavior for the elastomeric foam-cored sandwich panels in comparison to which is expected usually for the crushable foam-cored sandwich panels which may be concerned in many industrial applications.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3