Nonlinear stability analysis of stiffened functionally graded material sandwich cylindrical shells with general Sigmoid law and power law in thermal environment using third-order shear deformation theory

Author:

Van Dung Dao1,Nga Nguyen Thi1,Vuong Pham Minh2

Affiliation:

1. Faculty of Mathematics, Mechanics and Informatics, Vietnam National University, Hanoi, Vietnam

2. Faculty of Building and Industrial Construction, National University of Civil Engineering, Hanoi, Vietnam

Abstract

This paper investigates analytically nonlinear buckling and postbuckling of functionally graded sandwich circular thick cylindrical shells filled inside by Pasternak two-parameter elastic foundations under thermal loads and axial compression loads. Shells are reinforced by closely spaced functionally graded material (FGM) rings and stringers. The temperature field is taken into account. Two general Sigmoid law and general power law, with four models of stiffened FGM sandwich cylindrical shell, are proposed. Using the Reddy’s third-order shear deformation shell theory (TSDT), stress function, and Lekhnitsky’s smeared stiffeners technique, the governing equations are derived. The closed form to determine critical axial load and postbuckling load-deflection curves are obtained by the Galerkin method. The effects of the face sheet thickness to total thickness ratio, stiffener, foundation, material, and dimensional parameters on critical thermal loads, critical mechanical loads and postbuckling behavior of shells are analyzed. In addition, this paper shows that for thin shells we can use the classical shell theory to investigate stability behavior of shell, but for thicker shells the use of TSDT for analyzing nonlinear stability of shell is necessary and suitable.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3