Investigation of the bonding strength of the stainless steel 316L/polyurethane/stainless steel 316L tri-layer composite produced by the warm rolling process

Author:

Kamali Andani Mehran1ORCID,Daneshmanesh Habib1,Jenabali Jahromi Seyed Ahmad1

Affiliation:

1. Department of Materials Science and Engineering, Shiraz University, Shiraz, Iran

Abstract

In this study, a metal/polymer tri-layer composite was produced by direct adhesion (without adhesive), and mechanical locks were created using the warm rolling process. The effect of the process parameters including preheating temperature, rolling speed, thickness reduction, surface roughness, and the orientation of the surface scratches on the bond strength between layers was investigated. The results indicated that the suitable polymer fluidity and penetration, to provide stronger mechanical locks and higher bond strengths, could be achieved at an optimum preheating temperature and a rolling speed of 240°C and 36 r/min, respectively. In addition, the most appropriate surface pretreatment was obtained in the wire brush in the rolling direction mode with the surface roughness of 0.65 µm, so that the failure mechanism in this case was cohesive and the optimum thickness reduction was achieved at 40%. Furthermore, the mechanical properties of the sandwich sheet with highest bonding strength were evaluated.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3