Out-of-plane dynamic crushing behavior of joint-based hierarchical honeycombs

Author:

Tao Yong1ORCID,Li Weiguo2,Cheng Tianbao2,Wang Zhonggang3ORCID,Chen Liming2,Pei Yongmao4,Fang Daining45

Affiliation:

1. School of Civil Engineering, Central South University, Changsha, China

2. College of Aerospace Engineering, Chongqing University, Chongqing, China

3. School of Traffic and Transportation Engineering, Central South University, Changsha, China

4. State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing, China

5. Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, China

Abstract

Hierarchical structures have been viewed as promising candidates to offer superior performance compared to regular structures. In this study, six hierarchical honeycombs are constructed by replacing each joint of regular hexagonal and square honeycombs in three different ways. Numerical simulations are performed to study the out-of-plane dynamic crushing behavior and energy absorption performance of these hierarchical honeycombs. The results show that the three ways of introducing structural hierarchy can enhance the plateau stress, crash load efficiency, and specific energy absorption of regular honeycombs. Moreover, hierarchical honeycomb constructed by replacing each joint of regular hexagonal honeycomb with a smaller circle has the highest energy absorption capacity. In addition, the optimal configurations for different hierarchical honeycombs are presented, and the region of optimal structural parameter for these hierarchical honeycombs is determined, which are useful for the selection and design of hierarchical honeycomb configuration with desirable energy absorption performance.

Funder

China Postdoctoral Science Foundation

Natural Science Foundation of Hunan Province

Postdoctoral Innovation Talents Support Program of Chongqing

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3