Free vibration analysis of micro plate reinforced with functionally graded graphene nanoplatelets based on modified strain-gradient formulation

Author:

Mohammad-Rezaei Bidgoli Elyas1,Arefi Mohammad1ORCID

Affiliation:

1. Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, IR Iran

Abstract

In this paper, modified strain-gradient theory is developed for size-dependent formulation of micro plate reinforced with functionally graded graphene nanoplatelets. The reinforced micro plate is subjected to thermal and mechanical loads. The functionally graded graphene nanoplatelets are distributed along the thickness direction based on various patterns. The effective material properties of reinforced structure including modulus of elasticity and density or Poisson’s ratio are calculated based on Halpin–Tsai model and rule of mixture, respectively. The kinematic relations are developed based on third-order shear deformation theory. The solution procedure is proposed based on analytical work for custom boundary condition. Before presentation of numerical results, a comprehensive comparative study is performed for validation of present formulation. The numerical results are presented to investigate the influence of important parameters such as weight fraction of GNPs, various distribution of GNPs, three micro length scale parameters and some non-dimensional geometric parameters on the vibration responses.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3