Lattice modeling for the influence of geometrical patterns of 3D spacer fabric on tensile behavior of concrete canvas

Author:

Li Hui12ORCID,Zhang Wulong3,Chen Huisu1,Han Yudong4,Zhang Jian4,Han Fangyu1

Affiliation:

1. Jiangsu Key Laboratory of Construction Materials, School of Materials Science & Engineering, Southeast University, Nanjing, China

2. School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, China

3. No.32182 Branch, The Chinese People's Liberation Army, Beijing, China

4. Central Research Institute of Building and Construction, MCC Group Co., Ltd, Beijing, China

Abstract

Tensile behavior of concrete canvas (CC) mainly depends on the geometric patterns of 3D spacer fabric. A lattice model is proposed to model the three-dimensional structure of CC to investigate the influence of geometric patterns of 3D spacer fabric on the tensile behavior of CC. The stress intensity factor is also applied into the lattice model to study the crack development of CC subjected to tensile load. The simulation results are compared to the experiments to verify the model. Finally, the influence of geometric pattern of outer layer and spacer yarns on tensile behavior of CC are simulated based on our proposed lattice model. The results indicate that the tensile strength of CC increases as the loop unit size of outer surface decreases or the amount of spacer yarns increases; the tensile strength of CC with rhombus loop unit of outer surface layer is higher than that of CC with rectangle loop unit. The tensile strength of CC significantly increases with the increasing inclination angle of spacer yarns in 3D spacer fabric. Furthermore, CC specimens subjected to uni-axial tensile exhibit a multi-cracking behavior, the average crack spacing of specimen decreases with the decreasing inclination angle of spacer yarns in tensile direction.

Funder

Ministry of Science and Technology of China’s “973 Project

National Nature Science Foundation Project of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3