Affiliation:
1. Center for Composite Materials, University of Southern California Los Angeles, CA 90089-0241, USA
Abstract
The natural frequencies and corresponding vibration modes of a cantilever sandwich beam with a soft polymer foam core are predicted using the higher-order theory for sandwich panels (HSAPT), a two-dimensional finite element analysis, and classical sandwich theory. The predictions of the higher-order theory are shown to be in good agreement with experimental measurements made with a simple experimental setup, as well as with finite element analysis. Experimental observations and analytical predictions show that the classical sandwich theory is not capable of accurately predicting the free vibration response of soft-core sandwich beams. It is shown that the vibration response of the cantilever soft-core sandwich beam consists of a group of five lower frequency shear (antisymmetric) modes that are followed by a group of four thickness-stretch (symmetric) modes. For the higher frequency range, the vibration modes alternate between groups of one-two antisymmetric and symmetric modes. For very high frequencies, interactive vibration response is observed. Experiments show that the damping properties of the foam core are manifest most noticeably in the case of thickness-stretch vibration modes, whereas the influence of damping on the anti-symmetric modes is insignificant.
Subject
Mechanical Engineering,Mechanics of Materials,Ceramics and Composites
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献