Analytical and Experimental Study of Free Vibration Response of Soft-core Sandwich Beams

Author:

Sokolinsky Vladimir S.1,Von Bremen Hubertus F.1,Lavoie J. André1,Nutt Steven R.1

Affiliation:

1. Center for Composite Materials, University of Southern California Los Angeles, CA 90089-0241, USA

Abstract

The natural frequencies and corresponding vibration modes of a cantilever sandwich beam with a soft polymer foam core are predicted using the higher-order theory for sandwich panels (HSAPT), a two-dimensional finite element analysis, and classical sandwich theory. The predictions of the higher-order theory are shown to be in good agreement with experimental measurements made with a simple experimental setup, as well as with finite element analysis. Experimental observations and analytical predictions show that the classical sandwich theory is not capable of accurately predicting the free vibration response of soft-core sandwich beams. It is shown that the vibration response of the cantilever soft-core sandwich beam consists of a group of five lower frequency shear (antisymmetric) modes that are followed by a group of four thickness-stretch (symmetric) modes. For the higher frequency range, the vibration modes alternate between groups of one-two antisymmetric and symmetric modes. For very high frequencies, interactive vibration response is observed. Experiments show that the damping properties of the foam core are manifest most noticeably in the case of thickness-stretch vibration modes, whereas the influence of damping on the anti-symmetric modes is insignificant.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3