Free vibration analysis of fiber-reinforced polymer honeycomb sandwich beams with a refined sandwich beam theory

Author:

Cheng Shi12,Qiao Pizhong23,Chen Fangliang4,Fan Wei2,Zhu Zhende1

Affiliation:

1. College of Civil and Transportation Engineering, Hohai University, Nanjing, PR China

2. Department of Civil and Environmental Engineering, Washington State University, Pullman, WA, USA

3. State Key Laboratory of Ocean Engineering and School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, PR China

4. Department of Civil Engineering and Engineering Mechanics, Columbia University, New York, NY, USA

Abstract

Free vibration of a fiber-reinforced polymer honeycomb sandwich beam with sinusoidal core configuration is studied based on a refined sandwich beam theory. Using a micro/macromechanics approach for face laminates and a mechanics of material approach for honeycomb core, the equivalent elastic properties of face laminates and honeycomb core are obtained. A free vibration model based on the refined sandwich beam theory is formulated using the Hamilton's variational principle. Analytical solutions for a cantilevered sandwich beam are obtained by the Ritz method. Experimental results conducted on the fiber-reinforced polymer honeycomb sandwich beams with different lengths are applied to validate the proposed analytical solutions. As a comparison and further verification, the analytical solutions based on the Timoshenko beam theory and high-order beam theory are also presented. The analytical solutions in term of natural frequencies are compared with the numerical simulation results as well. Good agreements among various comparisons demonstrate the accuracy and capability of the refined sandwich beam theory and its potentials in design applications and health monitoring of fiber-reinforced polymer honeycomb sandwich beams.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3