Affiliation:
1. State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, China
Abstract
In practical applications, asymmetric sandwich panels with tapered and junction regions are frequently used. Under uniaxial compressions, asymmetric sandwich panels are collapsed with complex failure mechanism, and its mechanical behaviour is affected by tapered regions. For structure safety consideration, it is necessary to systematically investigate the stability and damage behavior of full-scaled asymmetric sandwich panels under uniaxial compression experimentally and numerically. For comparison, symmetric sandwich panels were also studied. Quasi-static compression tests and numerical modeling were conducted. Experimental data were sufficiently recorded and carefully analyzed. Meanwhile a nonlinear finite element model was advanced for evaluating stability and predicting failure behaviours and load-bearing capacity of test specimen. Comparisons between numerical predictions and experimental measurements showed that a good agreement was achieved. The tapered region had significant influence on stability behavior and load-bearing capacity. It intensified the asymmetry and introduced additional bending moments into asymmetric sandwich panels and thus caused early local buckling. Thicker core thickness enhanced the structural stiffness and load-bearing capacity. Large amounts of matrix cracking, fibre push-out and core-skin delamination were captured in asymmetric sandwich panels. Overall, buckling occurred in symmetric sandwich panels instead of local buckling in asymmetric sandwich panels, and brittle fibre breakage dominated the failure.
Funder
Priority Academic Program Development of Jiangsu Higher Education Institutions
Subject
Mechanical Engineering,Mechanics of Materials,Ceramics and Composites