Thermal sensitivity and relaxation of carbon fibre-foam sandwich composites with fibre optic sensors

Author:

Oromiehie Ebrahim1,Rajan Ginu2,Prusty Gangadhara B1

Affiliation:

1. School of Mechanical and Manufacturing Engineering, UNSW Australia, NSW, Australia

2. School of Electrical, Computer and Telecommunication Engineering, University of Wollongong, NSW, Australia

Abstract

The increasing use of sandwich composites for structural applications brings with it a need to establish a reliable inspection and monitoring method to ensure structural integrity and safe operation throughout the service life. Since optical fibre-based photonic sensing technologies are increasingly common for structural health monitoring of composite structures, selection of optical fibre Bragg grating sensors could be one possible choice for this purpose. In this paper, performance characterisation of sandwich composite with embedded silica fibre Bragg grating sensor is reported. Experimental tests were performed on a carbon fibre foam core sandwich composite embedded with a silica fibre Bragg grating sensor to extract the structural health monitoring parameters such as strain and temperature. The current study found that sandwich composite exhibits foam relaxation; however, its impact on strain measurement is negligible. Another important finding from the theoretical and the experimental thermal modelling was that although the constituent components of the sandwich composite have entirely different thermal expansion coefficients, its effect on the embedded fibre sensor can be minimal if the sensors are embedded between the face sheets. These results can initiate further research in this area and can lead to the development of state-of-the art structural health monitoring techniques for sandwich composite structures.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3