Design Procedure for Web Core Sandwich Panels for Residential Roofs

Author:

Briscoe Casey R.1,Mantell Susan C.2,Davidson Jane H.1,Okazaki Taichiro3

Affiliation:

1. Department of Mechanical Engineering, University of Minnesota Minneapolis, MN 55455, USA

2. Department of Mechanical Engineering, University of Minnesota Minneapolis, MN 55455, USA,

3. National Research Institute for Earth Science and Disaster Prevention, Miki, Hyogo 673-0515, Japan

Abstract

Panelized construction of residential buildings is gaining popularity due to the architectural and energy efficiency benefits that can be achieved. An important challenge to the design of panel structures for buildings is the balance between long-term structural performance and the thermal insulating requirement. In this study, foam core and web core panels are designed for residential roofs. Both panels are comprised of two face sheets and an insulating foam core. In the web core panel, thin metal webs that connect the face sheets are added to improve panel shear stiffness and enable longer spans. A design procedure is developed that considers R-value, panel deflection, core shear failure, bearing failure, and buckling of the face sheets and webs. The buckling model includes the ability of the foam core stiffness to restrain the buckling deformation. Panel designs are presented that provide R-5.3 m2 K/W for roof loads of 1500, 2000, and 3000 N/m2, corresponding to climate zones in the US. It is demonstrated that the web core panel can be designed for these structural and thermal requirements with unsupported span lengths as long as 7 m, while span lengths for foam core panels are limited to 4 m. Web shear buckling and R-value are the two performance criteria that limit panel span length and depth.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3