Low velocity impact behavior of sandwich composites with different structural configurations of foam core: An experimental study

Author:

Yalkın Hüseyin E12ORCID,Karakuzu Ramazan3,Alpyıldız Tuba4

Affiliation:

1. Graduate School of Natural and Applied Sciences, Dokuz Eylül University, Izmir, Turkey

2. Applied Science Research Center, Manisa Celal Bayar University, Manisa, Turkey

3. Department of Mechanical Engineering, Dokuz Eylül University, Izmir, Turkey

4. Department of Textile Engineering, Dokuz Eylül University, Izmir, Turkey

Abstract

In this study, various structural configurations such plain core, two-core, epoxy columns in the core, core stitched, and facesheet stitched were designed in the foam core sandwich composite with the aim to increase the absorbed energy and to decrease core/facesheet debonding area due to low-velocity impact. Glass fiber/epoxy and PVC foam were used as a facesheet material and a core material, respectively. The impact energy values were selected considering to penetration and perforation cases. The core stitching effect on low velocity impact behavior of sandwich composites were compared to facesheet stitching and it has been determined that the core stitching process can be an alternative to the facesheet stitching process in terms of the absorbed energy value. Impacted sandwich composites are investigated for core/facesheet debonding; the modifications through the thickness increased the failure path for core/facesheet debonding initiation and the results show that a significant decrease in the core/facesheet debonding area has been achieved.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3