Interface fatigue crack propagation in sandwich X-joints – Part I: Experiments

Author:

Moslemian Ramin1,Berggreen Christian1

Affiliation:

1. Department of Mechanical Engineering, Technical University of Denmark, Lyngby, Denmark

Abstract

In this study, face/core fatigue crack growth in sandwich X-joints is investigated numerically and experimentally. The work presented here covers Part I of the study which includes an experimental investigation of fatigue crack growth in sandwich X-joints and characterization of the face/core interface of the joints. Sandwich tear test specimens with a face/core debond representing a debonded sandwich X-joint were tested under cyclic loading. Fatigue tests were conducted on the sandwich tear test specimens with H45, H100 and H250 PVC cores and glass/polyester face sheets. The Digital Image Correlation technique was used to locate the crack tip and monitor the crack growth. For the specimens with H45 core, unstable crack growth took place initially. Following the unstable propagation, the crack propagated in the core underneath the resin-rich cell layer approaching the interface. However, the crack did not kink into the interface. For the specimens with H100 core, the crack propagated initially in the core and then returned into the interface and continued to propagate in the interface. For the specimens with H250 core, the crack initially propagated in the core and then kinked into the interface. The interface crack eventually kinked into the face sheet, resulting in large-scale fiber bridging. Finally, mixed mode bending tests were conducted to measure crack growth rates of the face/core interface at mode-mixity phase angles similar to those calculated for the sandwich tear test specimens. The measured crack growth rates have been used in Part II of this study to simulate fatigue crack growth in the sandwich tear test specimens.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3