High-order crack propagation in compressed sandwich panels

Author:

Odessa Itay1ORCID,Rabinovitch Oded1,Frostig Yeoshua1

Affiliation:

1. Faculty of Civil and Environmental Engineering, Technion—Israel Institute of Technology, Haifa, Israel

Abstract

The response and the debonding mechanisms in axially compressed sandwich panels with an interfacial delamination are investigated using a nonlinear model. The mathematical model combines the extended high-order sandwich panel theory with a cohesive interface modeling. It includes the first-order shear deformation kinematic assumptions for the face sheets and high-order small deformations kinematic assumptions that account for out-of-plane compressibility for the core. The interfaces bond the face sheets and the core by means of traction–displacement gap laws. These interfacial laws can describe a diversity of physical conditions. In particular, interfacial debonding nucleation and propagation are described using cohesive laws that introduce the interfacial nonlinearity into the model. Geometrical nonlinearity of the face sheets is introduced in order to capture the instability associated with the buckling of the delaminated face sheet. The cohesive interfaces and others parameters are calibrated to match experimental results taken from the literature for a sandwich specimen subjected to an end-shortening compression. The instabilities due to the in-plane compression, together with the existence of delaminated regions and their tendency to grow, prompt buckling of the delaminated face sheet as well as nucleation and propagation of the interfacial debonding. The theoretical quantification of this complex mechanism compares well with the experimental results in terms of the physical response, the nucleation and propagation of the interfacial crack, and the evolution of local/global geometrical instabilities. In addition, the analysis explores debonding mechanisms that are beyond the capabilities of the experimental technique. Finally, the sensitivity of the response and the associated geometrical and interfacial instabilities to the boundary conditions are investigated.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3