Experimental and numerical study of the response to various impact energy levels for composite sandwich plates with different face thicknesses

Author:

Rajput Moeen S1ORCID,Burman Magnus1ORCID,Forsberg Fredrik2,Hallström Stefan1ORCID

Affiliation:

1. Department of Aeronautical and Vehicle Engineering, KTH Royal Institute of Technology, Stockholm, Sweden

2. Division of Fluid and Experimental Mechanics, Luleå University of Technology, Luleå, Sweden

Abstract

Composite sandwich structures find wide application in the aerospace sector thanks to their lightweight characteristics. However, composite structures are highly susceptible to low-velocity impact damage and therefore thorough characterization of the impact response and damage process for the used material configurations is necessary. The present study investigates the effect of face-sheet thickness on the impact response and damage mechanisms, experimentally and numerically. A uni-directional, non-crimp fabric is used as reinforcement in the face-sheets, and a closed cell Rohacell 200 Hero polymer foam is used as core material. Low-velocity impact tests are performed in a novel instrumented drop-weight rig that is able to capture the true impact response. A range of impact energies are initially utilized in order to identify when low level damage (LLD), barely visible impact damage (BVID) and visible impact damage (VID) occur. A thorough fractography investigation is performed to characterize the impact damage using both destructive and non-destructive testing. The damage from the impacts in terms of dent depth, peak contact force, deflection and absorbed energy is measured. The results show bilinear responses in dent depth vs. impact energy and absorbed energy vs. impact energy. It is found than the BVID energy works well as an indication for the onset of excessive damage. Fractography reveals that there is a failure mode shift between the LLD and the VID energy levels, and that delaminations predominantly grow along the fiber direction and rotate in a spiral pattern through the thickness, following the laminate ply orientations. Finally, a progressive damage finite element model is developed to simulate both the impact response and the delamination extent, incorporating both intra-laminar and inter-laminar damage modes. The simulation shows good agreement with the experiments.

Funder

VINNOVA

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3