Affiliation:
1. Department of Engineering Mechanics, Dalian University of Technology, China
2. School of Urban Construction, University of South China, China
Abstract
For hierarchical corrugated sandwich structures with second-order core, the prediction error of failure behavior by existing methods becomes unacceptable with the increase of structure thickness. In this study, a novel analytical model called moderately thick plate model is developed based on Mindlin plate theory, which can be used to analyze the failure behavior of hierarchical corrugated structures with second-order core under compression or shear loads. Then, the analytical expressions of nominal stress for six competing failure modes are derived based on the moderately thick plate model. The results of six different unit structures based on the moderately thick plate model agree quite well the ones by finite element methods. Furthermore, the influence of different structure thicknesses is investigated to validate the applicability of the moderately thick plate model. According to the comparative results with the thin plate model, the proposed moderately thick plate model has a better precision with the increase of the ratio of thickness to width for failure components.
Subject
Mechanical Engineering,Mechanics of Materials,Ceramics and Composites
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献