Buckling of laminated glass plates using the effective thickness concept

Author:

Aenlle-López Manuel1,Pelayo Fernandez1ORCID,Calvente Miguel M1,Lamela-Rey Maria J1

Affiliation:

1. Department of Construction and Manufacturing Engineering, University of Oviedo, Gijón, Spain

Abstract

The critical buckling loads of laminated glass panels are time and temperature dependent because the mechanical behavior of these elements is governed by the material properties of the interlayers, which exhibit a viscoelastic behavior. Although structural stability is one of the design requirements in laminated glass panels, the literature about buckling of these elements is sparse. The finite element method can be used to calculate the response of laminated glass plates, but the classical eigenvalue buckling analysis implemented in these programs does not consider the time and temperature dependency of the interlayers. In this paper, a simplified analytical method to calculate the buckling critical load of rectangular laminated glass plates is presented, where the equations corresponding to linear-elastic monolithic thin plates are modified with an effective stiffness [Formula: see text] dependent on the geometry, material properties, and boundary conditions of the plate. The analytical equations are validated by numerical simulations on simply-supported laminated glass plates subject to uniaxial, biaxial, and in-plane shear, the maximum discrepancies being less than 10% for all the cases studied in the paper.

Funder

Spanish Ministry of Economy and Competitiveness

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3