Scale and manufacturing effects on tensile strength of marine grade sandwich composite panel joints

Author:

Tomlinson Scott M1ORCID,Lopez-Anido Roberto A1

Affiliation:

1. Department of Civil and Environmental Engineering, Advanced Structures and Composites Center, University of Maine, Orono, ME, USA

Abstract

In this article, scale and manufacturing effects on the tensile strength of marine grade sandwich composite panels and joints are investigated to aid in the fabrication of large modular ship hulls. This is done by researching transverse sandwich composite joint design, experimental tension methods, and scale and manufacturing effects on tensile strength. Three scales are utilized in this investigation of tension characteristics: coupon scale, table-top single panel fabrication scale, and in position mock-up full-size fabrication scale. First, material properties are gathered through industry standard coupon scale fabrication and testing. Next, a single-infusion baseline panel along with two ship hull transverse joint designs are chosen, fabricated, tested, and compared at single panel scale. These tests include individually fabricated hull panels, as well as secondary structural stiffener sandwich composite web panels, and stiffener flange components. The highest performing joint design is then utilized in a mock-up full-size fabrication scale structure. This structure includes both a transverse hull joint, as well as joints in the secondary structural stiffener web and flange. This mock-up fabrication scale component was then cut apart and tested in tension. The novel sandwich composite panel joint tension experimentation methods used indicate the methods studied are reliable for determination of characteristic tensile properties, and that the joints selected are effective. Investigations concerning scale effects comparing baseline fiber failure mode tension results from the coupon scale to the single panel scale, and manufacturing effects comparing joint interlaminar shear failure mode from the single panel scale to the mock-up fabrication scale, show decreased ultimate tensile strength with increased overall part size and manufacturing complexity. These factors, applied to a reference strength to achieve a nominal strength, were found to range from 0.796 to 0.846.

Funder

Office of Naval Research

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3