The energy-absorbing characteristics of tubular sandwich structures

Author:

Jishi HZ1,Alia RA23ORCID,Cantwell WJ2

Affiliation:

1. Faculty of Engineering, Higher Colleges of Technology, Al Ain, UAE

2. Aerospace Research and Innovation Center, Khalifa University, Abu Dhabi, UAE

3. Advanced Materials Research Centre, Technology Innovation Institute, Abu Dhabi, UAE

Abstract

The energy-absorbing response of sandwich structures with exceptionally high levels of energy absorption is investigated. The sandwich panels are produced by fixing small composite tubes onto metal facings with surface features that reflect the internal geometry of the tubing. Small diameter tubes are employed to manufacture the cores, since it is well established that the specific energy absorption (SEA) characteristics of a composite tube increase as the inner dimension (diameter or wall-to-wall) to thickness ratio decreases. Tests have been undertaken on tubular arrays based on both circular and square composite tubes. The effect of varying the areal density of the tubular array within the core was investigated by systematically increasing the number of tubes from one to nine. An examination of the composites during the crushing process indicated that all of the tubes failed in a splaying process, involving significant fracturing of fibers and longitudinal splitting. The measured values of SEA remained relatively constant in most cases as the areal density of the tubular arrangement was increased, suggesting that cores could readily be designed to absorb known levels of applied external energy. Arrays based on circular tubes offered higher energy-absorbing characteristics than their square counterparts, with values in excess of 100 kJ/kg being recorded in some cases. It is believed that these tubular sandwich structures offer potential for use in components that are subjected to extreme dynamic loading, such as those associated with impact and blast.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3