The impact response and failure mechanism of sandwich plates with M-type foldcore under low-velocity impact

Author:

Deng Yunfei1,Yin Yuan1ORCID,Wu Huapeng1,Zhou Chunping2,Zeng Xianzhi1

Affiliation:

1. College of Aeronautical Engineering, Civil Aviation University of China, Tianjin, China

2. Aeronautical Science Key Lab for High Performance Electromagnetic Windows, AVIC Research Institute For Special Structures of Aeronautical Composite, Jinan, China

Abstract

Foldcore sandwich structure has promising applications for load-bearing, and in this study, M-type foldcore sandwiches are prepared through a molding and pressing process with fiberglass. To be specific, the sandwich structures are investigated for dynamic response and damage mechanism under low-velocity impacts with various impact positions and energy. The results show that impact position significantly affects the damage mode of the sandwich plate, the damage mode of crush fracture and collapse failure at node position can dissipate higher energy compared with tensile fracture at base position. Moreover, the impact energy shows a certain influence only when the sandwich panel is not penetrated. Besides, numerical prediction closely matches experimental results in terms of load-displacement and energy-displacement histories. Effects of geometric configuration are explored, and the results suggest that although increasing the thickness of panel and core can effectively improve the load-bearing capacity under low energy impacts, increasing the core thickness is a more effective method in lightweight design than increasing the thickness of plane. Furthermore, the impact resistance can be enhanced by selecting the appropriate platform length and narrowing the platform angle. Notably, M-type foldcore sandwich is superior to V-type foldcore sandwich and corrugated sandwich in terms of specific energy absorption.

Funder

National Natural Science Foundation of China Youth Project

Civil Aviation University of China

Aeronautical Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3