Damage Characteristics of Composite Honeycomb Sandwich Panels in Bending under Quasi-static Loading

Author:

Zhou G.1,Hill M.2,Loughlan J.2,Hookham N.3

Affiliation:

1. Department of Aeronautical and Automotive Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK,

2. Department of Aeronautical and Automotive Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK

3. Hexcel Composites, Duxford, Cambridge CB2 4QD, UK

Abstract

Damage characteristics of composite-skinned honeycomb sandwich panels in bending are investigated with both hemispherical (HS) and flat-ended (FE) indenters. The thickness of the cross-ply skins varies from 8 to 16 plies, whereas the density of the 12.7-mm thick aluminum honeycomb core varies from 50 to 70 kg/m3. Clamped panels with a 100-mm testing area are loaded quasi-statically either in bending or on a rigid base. The effects of varying these parameters on damage mechanisms are examined through response curves as well as cross sections of selected specimens. Special emphasis is placed on their potential change induced by the variation of skin thickness and core density with a specific indenter. Damage mechanisms are identified as core crush, top-skin delamination, and fracture or shear-out. The threshold and ultimate loads as well as the initial slope increase significantly either on increase of skin thickness or change of the nose shape of indenter from a hemisphere to a flat-end. The increase in the post-initial-damage slope is small and can be attributed to membrane stretching of the damaged top skin. Increasing the core density affects substantially not only the threshold load, but also the initial slope associated with the FE indenter. Changing the nose shape of the indenter has an overriding effect on the nature of damage mechanisms. In particular, top-skin delaminations occur after core crush. The panel deflection contributes to 20-53% sandwich deformation. The bottom skin in all the tests remains intact.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3