Development of a Longitudinal Dataset of Persons With Dementia and Their Caregivers Through End-of-Life: A Statistical Analysis System Algorithm for Joining National Health and Aging Trends Study/National Study of Caregiving

Author:

Sullivan Suzanne S.1ORCID,Li Chin-Shang1,de Rosa Cristina1ORCID,Chang Yu-Ping1

Affiliation:

1. School of Nursinsg, University at Buffalo - South Campus, Buffalo, NY, USA

Abstract

Background: Alzheimer’s disease and related dementias (AD/ADRD) are terminal conditions impacting families and caregivers, particularly at end-of-life. Longitudinal, secondary data analyses present opportunities for insight into dementia caregiving and decision-making over time; however, joining complex datasets and preparing them for analysis poses many challenges. Objectives: To describe an approach to linking national survey data of older adults with their primary caregivers to build a prospective, longitudinal dataset, and to share the Statistical Analysis System (SAS) coding statement algorithms with other researchers. Methods: The National Health and Aging Trends Study (NHATS) and National Study of Caregiving (NSOC) are joined using a series of algorithms based on conceptual and operational definitions of dementia, primary caregivers, and the occurrence of death. A series of SAS algorithms resulting in the final longitudinal dataset was created. Results: NHATS/NSOC participants were linked using three preliminary data files (n = 12 427) and one final data join (n = 3305) over nine rounds of data collection. Presence of dementia was defined based on the indicator in the year preceding the last month-of-life (LML) interview. Primary caregivers were defined as the person providing the most frequent care over time. Additional flag variables (LML interview, dementia classification, and cohort (2011 vs 2015)) were created. The SAS algorithms are presented herein. Discussion: The SAS coding statement algorithms provide an opportunity to conduct longitudinal analysis of care for both members of the dyad in the context of dementia and end-of-life. Future research using the proposed dataset can further explore care and caregiving in these populations.

Funder

National Institute on Aging

Publisher

SAGE Publications

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3