Post-processing algorithms for distributed optical fiber sensing in structural health monitoring applications

Author:

Bado Mattia Francesco12ORCID,Casas Joan Ramon1,Gómez Judit1

Affiliation:

1. Department of Civil and Environmental Engineering, Technical University of Catalunya, UPC-BarcelonaTech, Barcelona, Spain

2. Institute of Building and Bridge Structures, Vilnius Gediminas Technical University, Vilnius, Lithuania

Abstract

Distributed optical fiber sensors are measuring tools whose potential related to the civil engineering field has been discovered in the latest years only (reduced dimensions, easy installation process, lower installation costs, elevated reading accuracy, and distributed monitoring). Yet, what appears clear from numerous in situ distributed optical fiber sensors monitoring campaigns (bridges and historical structures among others) and laboratory confined experiments is that optical fiber sensors monitorings have a tendency of including in their outputs a certain amount of anomalistic readings (out of scale and unreliable measurements). These can be both punctual in nature and spread over all the monitoring duration. Their presence strongly affects the results both altering the data in its affected sections and distorting the overall trend of the strain evolution profiles, thus the importance of detecting, eliminating, and substituting them with correct values. Being this issue intrinsic in the raw output data of the monitoring tool itself, its only solution is computer-aided post-processing of the strain data. This article discusses different simple algorithms for getting rid of such disruptive anomalies using two methods previously used in the literature and a novel polynomial-based one with different levels of sophistication and accuracy. The viability and performance of each are tested on two study case scenarios: an experimental laboratory test on two reinforced concrete tensile elements and an in situ tunnel monitoring campaign. The outcome of such analysis will provide the reader with both clear indications on how to purge a distributed optical fiber sensors-extracted data set of all anomalies and on which is the best-suited method according to their needs. This marriage of computer technology and cutting edge structural health monitoring tool not only elevates the distributed optical fiber sensors viability but also provides civil and infrastructures engineers a reliable tool to perform previously unreachable levels of accuracy and extension monitoring coverage.

Funder

European Social Fund

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3