On-board Strain Measurement of a Cryogenic Composite Tank Mounted on a Reusable Rocket using FBG Sensors

Author:

Mizutani Tadahito1,Takeda Nobuo2,Takeya Hajime3

Affiliation:

1. Department of Advanced Energy, Graduate School of Frontier Sciences The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8561, Japan,

2. Department of Advanced Energy, Graduate School of Frontier Sciences The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8561, Japan

3. Advance Technology R&D Center, Mitsubishi Electric Corporation, 1-1-57 Miyashimo, Sagamihara-City, Kanagawa 229-1195, Japan

Abstract

This article presents the real-time strain measurement of a composite liquid hydrogen (LH2) tank using fiber Bragg grating (FBG) sensors. The tank was composed of carbon fiber reinforced plastic (CFRP), and an aluminum liner was fabricated by the filament winding method and mounted on a reusable rocket. This rocket (vertical takeoff and landing) is called a reusable rocket vehicle test (RVT) and was developed by the Institute of Space and Astronautical Science of the Japan Aerospace Exploration Agency (ISAS/JAXA). Considering the high operational pressure and the iterative use of the tank, its structural integrity must be guaranteed. Thus, the authors have attempted a real-time strain measurement of the composite LH2 tank using FBG sensors during rocket operations. First, the adhesive properties of the FBG sensors were investigated at cryogenic temperatures. As a result, UV-coated FBG sensors and polyurethane adhesives were adopted. An onboard FBG demodulator was then developed to be mounted on the rocket and its performance was assessed. Finally, the strain measurement was attempted during the flight experiments of the RVT using the onboard FBG demodulator. FBG sensors were glued on the surface of the composite LH2 tank and connected to the onboard FBG demodulator. During these rocket operations, the output of the onboard FBG demodulator was continuously monitored via a telemetry system. The results obtained by the demodulator agreed well with those of the conventional foil strain gage.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Reference7 articles.

1. Concept and Preliminary Flight Testing of a Fully Reusable Rocket Vehicle

2. Van Steenkiste, R. J. and Springer, G. S. (1997). Strain and Temperature Measurement with Fiber Optic Sensors, pp. 112-119. Lancaster, PA: Technomic Publication .

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3