Non-parametric empirical machine learning for short-term and long-term structural health monitoring

Author:

Entezami Alireza12ORCID,Shariatmadar Hashem2ORCID,De Michele Carlo1

Affiliation:

1. Department of Civil and Environmental Engineering, Politecnico di Milano, Milano, Italy

2. Department of Civil Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

Early damage detection is an initial step of structural health monitoring. Thanks to recent advances in sensing technology, the application of data-driven methods based on the concept of machine learning has significantly increased among civil engineers and researchers. On this basis, this article proposes a novel non-parametric anomaly detection method in an unsupervised learning manner via the theory of empirical machine learning. The main objective of this method is to define a new damage index by using some empirical measure and the concept of minimum distance value. For this reason, an empirical local density is initially computed for each feature and then multiplied by the minimum distance of that feature to derive a new damage index for decision-making. The minimum distance is obtained by calculating the distances between each feature and training samples and finding the minimum quantity. The major contributions of this research contain developing a novel non-parametric algorithm for decision-making under high-dimensional and low-dimensional features and proposing a new damage index. To detect early damage, a threshold boundary is computed by using the extreme value theory, generalized Pareto distribution, and peak-over-threshold approach. Dynamic and statistical features of two full-scale bridges are used to verify the effectiveness and reliability of the proposed non-parametric anomaly detection. In order to further demonstrate its accuracy and proper performance, it is compared with some classical and recently published anomaly detection techniques. Results show that the proposed non-parametric method can effectively discriminate a damaged state from its undamaged condition with high damage detectability and inconsiderable false positive and false negative errors. This method also outperforms the anomaly detection techniques considered in the comparative studies.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3