Wind turbine pitch bearing fault detection with Bayesian augmented temporal convolutional networks

Author:

Zhang Chao1,Zhang Long1ORCID

Affiliation:

1. Department of Electrical and Electronic Engineering, University of Manchester, Manchester, UK

Abstract

There are few studies on the fault diagnosis of deep learning in real large-scale bearings, such as wind turbine pitch bearings. We present a novel fault diagnosis method, Bayesian augmented temporal convolutional network (BATCN), to filter the raw signal in wind turbine pitch bearing defect detection. This method, which employs temporal convolutional neural networks, is designed to capture the temporal dependencies of the signal, with such a focus on non-stationary relationships in the collected signals. By referring to the thoughts of Bayesian optimization, our approach can spontaneously find the best patch length that influences fault signal extraction during the filtering process, avoiding manual tuning of this hyper-parameter. This BATCN method is first performed on simulation signals and an open-source dataset of general bearings, and then validated on industrial wind turbine pitch bearings both in the lab and in the real wind farm, where the bearings have been operated for over 15 years. The results show that our method can work well for large-scale slow-speed wind turbine pitch bearings.

Funder

Engineering and Physical Sciences Research Council

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3